112 research outputs found

    Not Every Couple Is a Pair: A Supervised Approach for Lifetime Collaborator Identification

    Get PDF
    While scientific collaboration can be critical for a scholar, some collaborator(s) can be more significant than others, a.k.a. lifetime collaborator(s). This work-in-progress aims to investigate whether it is possible to predict/identify lifetime collaborators given a junior scholar\u27s early profile. For this purpose, we propose a supervised approach by leveraging scholars\u27 local and network properties. Extensive experiments on DBLP digital library demonstrate that lifetime collaborators can be accurately predicted. The proposed model outperforms baseline models with various predictors. Our study may shed light on the exploration of scientific collaborations from the perspective of life-long collaboration

    A3Graph : adversarial attributed autoencoder for graph representation learning

    Get PDF
    Recent years have witnessed a proliferation of graph representation techniques in social network analysis. Graph representation aims to map nodes in the graph into low-dimensional vector space while preserving as much information as possible. However, most existing methods ignore the robustness of learned latent vectors, which leads to inferior representation results due to sparse and noisy data in graphs. In this paper, we propose a novel framework, named A3Graph, which aims to improve the robustness and stability of graph representations. Specifically, we first construct an aggregation matrix by the combining positive point-wise mutual information matrix with the attribute matrix. Then, we enforce the autoencoder to reconstruct the aggregation matrix instead of the input attribute matrix. The enhancement autoencoder can incorporate structural and attributed information in a joint learning way to improve the noise-resilient during the learning process. Furthermore, an adversarial learning component is leveraged in our framework to impose a prior distribution on learned representations has been demonstrated as an effective mechanism in improving the robustness and stability in representation learning. Experimental studies on real-world datasets have demonstrated the effectiveness of the proposed A3Graph. © 2021 ACM

    Shifu2 : a network representation learning based model for advisor-advisee relationship mining

    Get PDF
    The advisor-advisee relationship represents direct knowledge heritage, and such relationship may not be readily available from academic libraries and search engines. This work aims to discover advisor-advisee relationships hidden behind scientific collaboration networks. For this purpose, we propose a novel model based on Network Representation Learning (NRL), namely Shifu2, which takes the collaboration network as input and the identified advisor-advisee relationship as output. In contrast to existing NRL models, Shifu2 considers not only the network structure but also the semantic information of nodes and edges. Shifu2 encodes nodes and edges into low-dimensional vectors respectively, both of which are then utilized to identify advisor-advisee relationships. Experimental results illustrate improved stability and effectiveness of the proposed model over state-of-the-art methods. In addition, we generate a large-scale academic genealogy dataset by taking advantage of Shifu2. © 1989-2012 IEEE

    FedVCP: A Federated-Learning-Based Cooperative Positioning Scheme for Social Internet of Vehicles

    Get PDF
    Intelligent vehicle applications, such as autonomous driving and collision avoidance, put forward a higher demand for precise positioning of vehicles. The current widely used global navigation satellite systems (GNSS) cannot meet the precision requirements of the submeter level. Due to the development of sensing techniques and vehicle-to-infrastructure (V2I) communications, some vehicles can interact with surrounding landmarks to achieve precise positioning. Existing work aims to realize the positioning correction of common vehicles by sharing the positioning data of sensor-rich vehicles. However, the privacy of trajectory data makes it difficult to collect and train data centrally. Moreover, uploading vehicle location data wastes network resources. To fill these gaps, this article proposes a vehicle cooperative positioning (CP) system based on federated learning (FedVCP), which makes full use of the potential of social Internet of Things (IoT) and collaborative edge computing (CEC) to provide high-precision positioning correction while ensuring user privacy. To the best of our knowledge, this article is the first attempt to solve the privacy of CP from a perspective of federated learning. In addition, we take the advantages of local cooperation through vehicle-to-vehicle (V2V) communications in data augmentation. For individual differences in vehicle positioning, we utilize transfer learning to eliminate the impact of such differences. Extensive experiments on real data demonstrate that our proposed model is superior to the baseline method in terms of effectiveness and convergence speed

    The gene of scientific success

    Get PDF
    This article elaborates how to identify and evaluate causal factors to improve scientific impact. Currently, analyzing scientific impact can be beneficial to various academic activities including funding application, mentor recommendation, discovering potential cooperators, and the like. It is universally acknowledged that high-impact scholars often have more opportunities to receive awards as an encouragement for their hard work. Therefore, scholars spend great efforts in making scientific achievements and improving scientific impact during their academic life. However, what are the determinate factors that control scholars' academic success? The answer to this question can help scholars conduct their research more efficiently. Under this consideration, our article presents and analyzes the causal factors that are crucial for scholars' academic success. We first propose five major factors including article-centered factors, author-centered factors, venue-centered factors, institution-centered factors, and temporal factors. Then, we apply recent advanced machine learning algorithms and jackknife method to assess the importance of each causal factor. Our empirical results show that author-centered and article-centered factors have the highest relevancy to scholars' future success in the computer science area. Additionally, we discover an interesting phenomenon that the h-index of scholars within the same institution or university are actually very close to each other. © 2020 ACM

    Random Walks: A Review of Algorithms and Applications

    Get PDF
    A random walk is known as a random process which describes a path including a succession of random steps in the mathematical space. It has increasingly been popular in various disciplines such as mathematics and computer science. Furthermore, in quantum mechanics, quantum walks can be regarded as quantum analogues of classical random walks. Classical random walks and quantum walks can be used to calculate the proximity between nodes and extract the topology in the network. Various random walk related models can be applied in different fields, which is of great significance to downstream tasks such as link prediction, recommendation, computer vision, semi-supervised learning, and network embedding. In this paper, we aim to provide a comprehensive review of classical random walks and quantum walks. We first review the knowledge of classical random walks and quantum walks, including basic concepts and some typical algorithms. We also compare the algorithms based on quantum walks and classical random walks from the perspective of time complexity. Then we introduce their applications in the field of computer science. Finally we discuss the open issues from the perspectives of efficiency, main-memory volume, and computing time of existing algorithms. This study aims to contribute to this growing area of research by exploring random walks and quantum walks together.Comment: 13 pages, 4 figure
    corecore